Recharge conditions in several areas of northeastern Illinois are described, and recharge rates for several aquifers in central and southern Illinois are given. Recharge rates to deeply buried bedrock and sand-and-gravel aquifers vary from 1300 to 500,000 gallons per day per square mile (gpd/sq mi). The lowest rate is for an area where the Cambrian-Ordovician Aquifer is overlain by the Maquoketa Formation consisting mostly of shale; the highest rate is for an area where a sand-and-gravel aquifer is overlain by permeable coarse-grained deposits. Groundwater recharge generally is at a maximum during wet spring months; in many years there is little recharge during the five-month period July through November. The theoretical aspects of recharge from precipitation are discussed; recharge rates vary with the coefficient of vertical permeability, the vertical head loss associated with recharge, and the saturated thickness of deposits through which vertical leakage of water occurs. Recharge rates are not constant but vary in space and time. A summary of coefficients of vertical permeability and leakage of deposits overlying aquifers within the state is presented. Coefficients of vertical permeability of glacial deposits range from 1.60 to 0.01 gallons per day per square foot (gpd/sq ft). The average coefficient of vertical permeability of the Maquoketa Formation is 0.00005 gpd/sq ft. Coefficients of leakage of glacial deposits and bedrock confining beds range from 2.3 x 10-1 to 2.5 x 10-7. Annual ground-water runoff from 109 drainage basins scattered throughout Illinois is estimated with streamflow hydrograph separation methods and flow-duration curves. The relations between groundwater runoffs during years of near, below, and above normal precipitation and basin characteristics such as geologic environment, topography, and land use were determined by statistical analysis. Groundwater runoff is greatest from glaciated and unglaciated basins having considerable surface sand and gravel and underlain by permeable bedrock. Groundwater runoff is least from glaciated basins with surface lakebed sediments and underlain by impermeable bedrock. Groundwater runoff during a year of near normal precipitation ranges from 0.06 to 0.43 cubic feet per second per square mile (cfs/sq mi). Groundwater runoff is at a maximum during spring and early summer months, and is least in late summer and fall months. Annual groundwater runoff depends upon antecedent moisture conditions as well as the amount and distribution of annual precipitation. Because many aquifers in Illinois are deeply buried, not all groundwater runoff can be diverted into cones of depression because there is some lateral as well as vertical movement of water in surface deposits. Data on groundwater runoff can be useful in estimating recharge to aquifers and in evaluating the potential yield of groundwater reservoirs. However, studies indicate that no simple relation exists between groundwater runoff and the potential or practical sustained yields of aquifers.
This report is the second of a series of three reports being prepared for the work done on the Kankakee River based on a Conservation 2000 Grant from the Illinois Department of Natural Resources. The present report focuses on the bank erosion mapping of the main stem of the Kankakee River from Route 30 Bridge in Indiana to the mouth of the Kankakee River with the Illinois River near Wilmington. A total of 111.8 river miles were mapped during a boat trip November 19-December 1, 1998. The relative magnitude of erosion was based on a visual assessment of the river banks during a boat trip along the main stem of the river. No actual measurements were taken. However, the extent of erosion was noted on 7.5-minute quadrangle maps based on visual observations. A series of 27 maps has been developed in which bank erosion identified on both sides of the river ranged form minor to high erosion. This analysis has shown the 10.4 river bank miles had severe erosion, 39.4 bank miles had moderate erosion, 70.8 bank miles had minor erosion, 46.3 bank miles were stable, 46.7 river bank miles were artificially protected, and data on 10.0 bank miles could not be collected because snags, islands, etc. made the banks inaccessible. This is a first attempt to map existing bank erosion conditions of the main stem of the Kankakee River.
A large undeveloped ground-water reservoir underlies an area along the Illinois and Sangamon Rivers in west-central Illinois. The area is called the Havana region in this report.This report is based on data collected during the investigation and additional data on file at the Illinois State Water Survey and the Illinois State Geological Survey and in published reports. It presents geologic and hydrologic information, the geologic history of the area, present hydrologic conditions, and effects of possible future development on the ground-water resources of the region. Special emphasis is placed on the extensive unconsolidated sand and gravel deposits, which are the principal aquifers in the region, and their potential yield is evaluated. The geology and hydrology of the bedrock formations are discussed only briefly as these formations contain limited quantities of ground water, and it is of relatively poor quality. Data on water levels, pumpage, well construction features, water temperature, mineral quality of water, well-production and aquifer tests, and other hydrologic information were collected by the State Water Survey. Well logs, drilling samples, geophysical logs, and other geologic information were collected by the State Geological Survey.
The First Sino - U.S. Joint Workshop on Sediment was organized with strong support from both the United States and China, with the intention to strengthen information exchange and cooperation on research on emerging hydro-environmental problems. The Natural Science Foundation of China has established a national key research project, Study on Mechanisms of River Sedimentation, Disasters, and Control Strategies in China, and is interested in establishing a bilateral cooperation program with the United States on sediment transport and sediment-induced disasters. A joint workshop was considered to be an effective approach for scientists and engineers from both countries to exchange knowledge and experience, to explore research and educational needs, and to initiate future collaborations. In a three-day meeting in Beijing, China, followed by a five-day field study in the Loess Plateau along the middle reach of the Yellow River, the participants exchanged information on sediment-related topics and identified opportunities for future research and cooperation. A major emphasis of the workshop was to promote direct discussions, and the workshop sessions were structured accordingly. The format worked very well and resulted in ample exchange of experiences and needs for future studies. This report presents information from the workshop and summaries of discussions from the meeting in Beijing.
Realizing the importance of Peoria Lake and the seriousness of the sedimentation problem of the lake, the Illinois State Water Survey initiatedthe Peoria Lake Sediment Investigation under the sponsorship of the U.S. ArmyCorps of Engineers, Rock Island District.The main objectives of the study were to:- Determine the sedimentation rate of the lake- Identify the sources of sediment to the lake and their relativequantities- Develop a sediment budget- Investigate the quality of the sediment in the lake- Investigate a range of alternative solutions to the sedimentationproblem of the lake and make recommendationsThis project will address alternative solutions to the problem of sedimentation in Peoria Lake.
The State Water Survey of Illinois began the investigation of the waters of the State in 1895. While the Survey has laid special stress on the determination of the character of the waters from a sanitary standpoint, it has also often been called upon to make analyses of the mineral content to determine its character from a medicinal or commercial standpoint. In the various reports so far issued by the Survey only results of the sanitary investigations were published. It had been the intention to publish the results of the mineral analyses in a previous report but this had to be postponed until the present time when, in cooperation with the Geological Survey, it has become possible. This Bulletin, primarily, contains the records of the analyses made to determine the composition of the mineral residue with reference to the value of the water for manufacturing and medicinal uses, but there are also included the sanitary analyses, wherever such analyses have been made.
Soil organic carbon (SOC) sequestration is important to climate change and cropland agriculture. Crops naturally use the greenhouse gas, carbon dioxide (CO2), from the atmosphere; the greater the crop productivity, the greater the amount of CO2 used. Agronomic practices that enhance sequestration of crop biomass in soil as SOC also enhance removal of CO2 from the atmosphere, and improve and sustain soil fertility. To effectively reduce the concentration of CO2 in the atmosphere and mitigate climate change, sequestration of SOC must be long term, defined as decades or longer. This report presents a review and synthesis of scientific understanding of SOC sequestration, based on the history and genesis of soils and vegetation in Illinois, and the response of SOC and crops to agronomic practices. Recommendations for future cropland SOC research are made. The scientific literature is reviewed in light of the Illinois conditions affecting the five interactive soil-forming factors that are widely recognized (biology, parent material, climate, topography, and time). The literature also shows that human activity can be considered a sixth soil-forming factor. Native American land-use practices of whole ecosystem manipulation were important in governing soil formation and SOC contents in Illinois, as were the land-use practices of the settlers who displaced them. An important finding of this work is that to reduce the atmospheric CO2 content and sustain cropland agriculture, SOC must be sequestered throughout the soil profile. The modern literature reports SOC increases when tillage is changed from conventional to conservation tillage practices. However, SOC measurements are surficial, usually no more than the top 30 cm, with most of the C being sequestered in the top 15 cm. The unstated assumption in the modern literature is that surficial SOC changes represent all the SOC changes in the soil profile. This work shows that the SOC losses in the deeper soil layers may overwhelm surficial SOC increases. In order to assert that C is being sequestered in the soil, the whole-soil profile must be considered. It is recommended that future research into SOC sequestration be conducted from a whole-plant/whole-soil perspective in a soil genesis context using the following strategies. Mine the Literature. Most of the literature needed to provide the requisite whole-plant/whole-soil perspective and soil genesis context is scattered and not organized, summarized, or synthesized in the current SOC sequestration literature. The evolution of SOC sequestration research has been a narrowing of perspective away from the more holistic whole-plant/whole-soil perspective of the foundational agronomic literature to the perspective of the near-surface soil layer. This vast foundational literature needs to be located, restored, and incorporated with the current literature on crop rhizosphere and C and nutrient cycles throughout the whole-soil profile, soil genesis, soil fertility, subsoil amelioration, and other literatures to be organized, summarized, and synthesized into the SOC sequestration literature. Long-term Whole Plant/Whole Soil Monitoring and Assessment. Assessment of the effects of agronomic practices on SOC must be expanded to include the whole-soil profile. Improved estimates of presettlement soil SOC contents are needed to better assess SOC loss and SOC sequestration potential of Illinois' prairie and forest soils. The magnitude and swiftness with which natural factors govern SOC contents need to be better identified and quantified while incorporating a more comprehensive definition of soil aging along with consideration of presettlement and postsettlement anthropogenic landscape management practices as soil-forming factors. SOC Sequestration Research. Finally, research on how agronomic practices can increase SOC throughout the soil profile needs to be conducted from a whole-plant/whole-soil perspective in a soil genesis context. This report indicates that the optimal way to sequester SOC is to convert land back to native prairie, burn frequently, add fertilizers, and remove anthropogenic surface and subsurface drainage. Such an approach is not practical. Constraints on optimizing cropland SOC sequestration include: 1) the need to maintain good soil drainage in Illinois soils for timely spring planting that allows for growth of long-season corn hybrids and soybean varieties; and 2) maintaining soil-nutrient levels that do not result in water-quality issues. Within these constraints, the authors hypothesize that SOC sequestration can best be done by 1) developing balanced soil-fertility programs and other agronomic practices that restore soil nutrients to levels optimum for plant growth, promote movement of plant nutrients throughout the root zone using organic and/or inorganic carriers, and promote deep rooting of plants with minimal mechanical disturbance of the soil by tillage; and 2) developing chemical pest control programs that minimize the effects of pesticides on soil bacteria, and microfauna and macrofauna, thus promoting conversion of biomass to SOC, pedoturbation and net movement of SOC through the soil profile, and creation of soil structure and aggregation that optimize biomass production and conversion to stabilized SOC. Research on the development of these practices must include evaluation of nutrient movement into ground and surface waters. Losses of SOC have occurred on the order of the century time scale. SOC sequestration and the measure of its success (permanence of SOC sequestration) are also necessarily measured on the order of the century time scale. Therefore, long-term (20- to 30-year) agronomic SOC sequestration research at both the farm and individual plot level needs to be designed and conducted for hypothesis and model testing, as well as evaluation of the permanence of SOC in the surface and whole-soil profile. Even longer term research needs to be designed and conducted for hypothesis refinement and for monitoring.
The United States Environmental Protection Agency (USEPA) National Regional Nutrient Criteria Development Program is developing regional-specific criteria for total nitrogen concentrations in surface waters. These criteria will provide the foundation for states to set total nitrogen standards to remedy impairments caused by nutrient overenrichment and to protect designated uses. Reference conditions representing minimally impacted surface waters will be developed for each ecoregion. All nutrient criteria must be based on sound scientific rationale. The first element of a nutrient criterion identified by USEPA is "... historical data and other information to provide an overall perspective on the status of the resource." The second element includes " ... a collective reference condition describing the current status." A further element requires "... attention to downstream consequences." The USEPA recognizes that nutrient concentrations in surface waters are primarily affected by the rate of weathering and erosion from watershed soils. Human activity can affect on the natural load of nutrient inputs to surface waters through, for example, vegetation disturbance of the vegetation, and addition of nutrient-containing material, such as fertilizer. At the heart of the overenrichment problem are the rates of production and decomposition of organic materials, of which nitrogen is a component. This report provides a contribution to the setting of reference/background conditions for Illinois through the evaluation of the current status of water resources against historical conditions, and some attention to downstream consequences. A particular focus of downstream consequences is hypoxia in the Gulf of Mexico, allegedly caused by the flux of excess nitrogen from the Upper Mississippi, Ohio, and Missouri River Basins. The concept of biogeochemical cycling provides an appropriate and necessary framework for understanding landscape influences on water quality throughout the Illinois River Basin. Changes in the Illinois River Valley and its system of tributary streams and lakes are well recognized, but this is the first attempt to assess in some detail how such changes have affected the aquatic carbon, oxygen, and nitrogen cycles; especially the impact of such watershed changes on the nature and quantity of aquatic nitrogen, as well as on the nitrogen cycle within the terrestrial reservoir. This is seen in the accompanying time line of the estimated nitrogen richness of the Illinois landscape. Scientists studying soils and crops from the mid-19th through mid-20th centuries documented that human activities have greatly altered the natural nitrogen cycle. Cultivation of virgin land typically depleted nitrogen and carbon stored in these reservoirs by about 50 percent in the first 60-70 years of cultivation. Some of this nitrogen was transferred to surface waters and ground waters. The depletion of nitrogen from soils in the Mississippi River Basin was so great that crop yields declined throughout the 19th and early 20th centuries. By mid-20th century, the extensive use of nitrogen fertilizer, improved plant varieties, and agronomic practices increased crop yields. Nitrogen fertilizer also began to replenish some of the large amounts of nitrogen previously removed from the soil. In the 1970s, profound changes occurred in the perception of the natural nitrogen cycle and human modification of that cycle. The nitrogen cycle, and human impacts on it came to be defined in terms of atmospheric nitrogen fixation and the return of nitrogen gases by nitrification/denitrification. The 99 percent of the nitrogen cycle which was otherwise cycled within and between the large soil, sediment, and plant reservoirs were no longer acknowledged. From this new definition of the nitrogen cycle, it was concluded that human activities, especially fossil-fuel combustion and fertilizer use, had doubled the nitrogen cycle and many lands, including much of Illinois, had become nitrogen saturated. Increasing concentrations of nitrate-nitrogen in surface waters were given as evidence of nitrogen saturation and leakage. This new limited edition of the nitrogen cycle became cast in concrete and is referred to in this report as "the new, standing nitrogen-cycle paradigm." This report uses the earlier, scientifically more complete and defensible definition of the nitrogen cycle, which includes recognition of the magnitude and importance of soil-plant reservoirs and exchanges. It uses extensive scientific documentation of major changes in ecosystems and soil nitrogen that have occurred over centuries, to place into perspective the present status of nitrogen resources -- as required by USEPA. This report examines the impact on nitrogen concentrations in surface waters in Illinois during occupation of the land by Native Americans, bison, and many other animals and birds. Theoretical impacts are complemented by written accounts of early settlers and scientific observations made under similar conditions. It is concluded that the landscape and surface waters were more nitrogen saturated at this time than today. These pre-European-settlement conditions were selected as the reference/background conditions. Just prior to and during the period of early European settlement, the populations of Native Americans and bison were eliminated and the landscape became less nitrogen saturated. Nevertheless, even in the 1820s, the Illinois River was hypertrophic, i.e. nutrient overenriched. As late as the 1850s, the amount of eroded soil transported by the Mississippi River was more than twice that transported in recent decades. Since soil erosion is reported to be the major sort of N delivery from agricultural lands, the N load in the Mississippi River was declining. The average annual concentration of total nitrogen in the Lower Illinois River in 1894-1899 was 3.68 mg N/l, and additional large amounts of nitrogen not measured were stored in plankton and luxuriant aquatic vegetation and transported downstream in copious amounts of organic debris. Allowing for the unmeasured flux of nitrogen as plankton and for low flow, the adjusted average annual concentration of total nitrogen in the Lower Illinois River in 1894-1899 is estimated to have been about 5.5 mg N/l. This report also examines the impact of European settlement and agriculture on the nitrogen cycle and water quality. Scientific data show that the average concentration of total nitrogen in the Lower Illinois River increased to about 10 mg N/l by mid-20th century and subsequently decreased to 4.8 mg N/l in the 1990s. The annual concentration of nitrate in the Lower Illinois River peaked at about 6.2 mg N/l in 1967-1971 and subsequently decreased to about 3.8 mg N/l in 1993-1998. These improvements in water quality are associated with an increasing amount of dissolved oxygen in the river. The reductions in the concentrations of all forms of nitrogen are attributable to both point- and nonpoint-source pollution control. The main conclusions of this report are that, in establishing scientifically sound reference/background conditions, it is necessary to quantify in a common unit all forms of nitrogen (in solution, as solids, and as gases; and organic and inorganic forms) and all sources, reservoirs, transformations, and fluxes of nitrogen in a common unit; and to understand interactions between nitrogen and other biogeochemical cycles of, for example, water, oxygen, carbon, and phosphorous. Criteria for setting nitrogen standards must recognize the great complexity of the nitrogen cycle and its interdependence with other variables, cycles, and anthropogenic influences.
The Cache River located in the southernmost part of Illinois flows through an area containing the Cache River Wetlands. These unique and important wetlands were designated as a Ramsar Site in 1996. Drainage activities divided the Cache River in half in the early 1900s, effectively separating the river into the Upper and Lower Cache Rivers. The Lower Cache River contains a remnant of a vast wetland system called the Lower Cache River State Natural Area (LCRSNA), commonly referred to as Buttonland Swamp. Sediment inflow from several tributary streams has an impact on the wetland. Previous research has determined that 217,000 tons of sediment were deposited in Buttonland Swamp between 1986 and 1988. The wetlands of the Lower Cache River have been targeted for preservation and restoration by state, federal, and private environmental organizations. A program to monitor the sediment deposition rate within the wetland area at regular intervals would be useful in evaluating and guiding preservation and restoration efforts. This project established a benchmark measure of the deposition rates and cross-sectional profiles at selected locations in the LCRSNA wetland.
A detailed climatological study of all severe winter storms occurring in Illinois during the 1900-1960 period has been pursued to obtain extensive information concerning these frequently quite damaging snow and ice storms. This study provides information that enlarges our knowledge of the basic climatological aspects of winter storms, statistics concerning the amount and types of damage they produce, descriptions of the meteorological conditions producing these storms, and data helpful in the design and planning for these events.